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Abstract -
UAVs are used to rapidly and safely collect site data for

engineering purposes. Thermal and RGB imagery are often
captured for building envelope inspections. On large sites,
the data produced can be cumbersome to process, especially
if taken in a video format. This paper presents a way to per-
form image registration, or low-level data fusion, on thermal
and RGB images that were simultaneously captured from
rigidly fixed cameras - the same type as those found on com-
mercial RGB-Thermal UAVs. The intention is to convert raw
captured data into RGB-Thermal tensors that can be used
in deep learning applications. Current techniques of geo-
metrically calibrating a thermal camera can include compli-
cated setups that make calibration at extreme angles difficult.
Three calibration boards were involved in testing this image
registration method: a cardboard and acrylic board, a wood
and vinyl board, and a metal and vinyl board. Of the three,
only the metal and vinyl calibration board yielded a consis-
tent image, regardless of the time passed between the first
and last captured image. This proves that calibration can
be conducted cheaply and in any open area without obstruc-
tions.
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1 Introduction

Thermal cameras are valuable tools for building enve-
lope energy analysis, but they frequently produce distorted
images that must be geometrically calibrated before use in
computer vision applications like deep learning segmen-
tation networks (See Figure 1).

Image segmentation can be done in multiple ways, in-
cluding using a deep learning model that accepts two un-
calibrated tensors as input. However, this approach re-
quires significant training data to generalize to other drones
and camera setups. The workaround is to undistort and
align the images into a single tensor with the same field of
view. Undistortion is necessary to ensure accurate recog-
nition of shapes across different camera types and different
areas of the image. Distortion affects different parts of the
image differently; with fisheye lens distortion significantly
affects the edges more than the center. Accounting for
information from all portions of the image is crucial when
automating computer vision tasks.

Geometric calibration determines the intrinsic proper-
ties of the camera that can be used to undistort the camera

Figure 1. Raw and Processed Thermal Images

image. To learn the camera’s calibration matrix and dis-
tortion coefficients, a scene with known coordinates is
necessary. In RGB photos, the most common method of
achieving this is through a checkerboard or a chessboard
(See Figure 2). The alternating light-dark pattern identifies
a common corner between the squares, and the OpenCV
library finds the checkerboard points and performs camera
calibration and undistortion based on the corner’s screen
location.

This paper examines various techniques for geometri-
cally calibrating both thermal and RGB images taken by a
drone for use in building envelope energy analysis using
deep learning segmentation networks. We explore materi-
als for the easy and simple calibration and image alignment
for drones. Additionally, it proposes a method to combine
them into a 4D tensor for deep learning network use. Our
findings will benefit building energy analysts, engineers,
and researchers who employ drones and deep learning seg-
mentation networks for building envelope energy analysis
and sustainability.

2 Related Works
2.1 Thermal Camera Calibration

There have been a number of successful attempts to
geometrically calibrate a thermal camera. Ursine et al.
[1] attempted to geometrically calibrate a thermal camera
by creating a checkerboard calibration grid. This grid
was constructed with a copper plate that had a painted
checkerboard calibration pattern. The problem with such a
set up is that multiple calibration rigs would be susceptible
to a level of error based on the human painters skills. The
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Figure 2. Uncalibrated and distorted thermal image
of a checkerboard - corners of the checkerboard are
known to lie on straight lines

process of making and manufacturing these calibration
grids limits industrial reproducibility.

Shibata et al. [2] are able to ensure industrial repro-
ducibility through the use of an offset grid. While they
use a checkboard pattern and the size of the checkers can
be ensured to be consistent within a level of machine error,
the offset they introduce can result in poor calibration if
a camera calibration image is taken at a somewhat large
angle. Furthermore, Shibata et al recognize that it is dif-
ficult to produce thermal images of checkerboard patterns
with a quality and contrast high enough for corner detec-
tion and camera calibration. They introduce a novel tone
mapping technique to adaptively increase the contrast of
their images. The drawback of their method is that they
require active heating of their calibration grid this means
that camera calibration can only be performed in labs with
specific equipment. Producing their set-up is also labour
intensive and cannot be easily shipped from one location
to another.

Hou et al. [3] were able to achieve results similar to
those achieved by Ursine et al. They used a cardboard
with square tin foil cut outs to create an emissivity differ-
ence that could be create a checkerboard pattern in thermal
images. They were able to find the corners in the checker-
board pattern, but they required lab scale conditions to
calibrate their thermal camera. Additionally, the calibra-
tion kit they have is not robust enough for commercial
applications and could easily be damaged in transporta-
tion.

Previous papers either use a complicated set up involv-
ing active heating [4], resistors [5], or offset plates [2] that
make calibration at extreme angles difficult. Other papers
use image processing techniques to improve the detectabil-
ity of points and lines on a thermal image. This paper uses

Apriltags ensuring that it requires no further image pro-
cessing and can be used to easily calibrate the cameras on
a UAV that’s flown above and around the board.

2.2 RGB & Thermal Image Alignment

There are a number of successful attempts to combine
and register thermal and RGB images. Istenic et al. [6]
used a Hough transform to register thermal and RGB im-
ages. They required a structured environment with many
lines and were not able to accurately account for scale
between images in all cases. Knyaz and Moshkantsev
[7] developed a technique that created a 3D scene using
RGB and thermal information and combined the two 3D
scenes to find the transforms between associated RGB and
thermal images. Dlesk et al. [8, 9] researched the use of
homography to align images with detectable feature points
and went on to perform experiments that create RGBT im-
agery through combining RGT, TBG and RTB imagery.

3 Method
3.1 Cardboard and Acrylic Calibration Board

Initial calibration experiments involved creating a cal-
ibration kit with a spatially offset calibration board and
heating up protruding parts of the board to create an
observable thermal difference between black and white
checks in a thermal image. The calibration board was
made of black acrylic laser cut squares glued on to a
cardboard backing/substrate. Paper with a printed 6 x 8
checkerboard pattern was pasted onto the cardboard sheet
and acrylic squares were glued onto the paper. Black sec-
tions of the paper were covered by acrylic squares. The
cardboard of size 12.5 inches (317.5 mm) x 11.5 inches
(292.1 mm). Acrylic squares had a side length of 1.1
inches (27.94 mm) and the printed checkerboard pattern
had checks of the same size.

3.2 Wood and Vinyl Calibration Board

A calibration board for thermal imaging was made by
spray painting a 300 mm x 420 mm x 3.175 mm thick wood
board white and laser cutting it to have 40 mm squares.
The squares were connected with 0.1 mm connections
to keep them together and prevent falling out. A black
vinyl substrate was taped to the back. The board was
heated by placing it on a warm surface (40 C to 50 C) to
create a temperature difference between the surface of the
substrate and the surface of the wood, and images were
captured indoors at 23 C to 25 C. The drone flew indoors
to hover over the board placed on indoor carpeting, and
images were captured over 6 minutes. After the calibration
kit had cooled off, it was reheated, and additional images
were taken. The connection between the squares was small



enough to not be detected by an RGB corner detection
algorithm.

3.3 Metal and Vinyl Calibration Board

A metal Apriltag calibration board was created using
a large metal board and vinyl. The metal was 3/8 inches
thick and made of unpolished oxidized aluminum, while
the vinyl was cut using a Cricut Maker in the NYU Mak-
erspace. The vinyl was applied onto transfer paper, then
carefully placed over the metal substrate board, making
sure to reduce the chance of bubbles being captured under
it. The transfer paper was carefully removed to leave only
the vinyl on the metal substrate. Tests were conducted
both heated and unheated, indoors and outdoors. In the
first qualitative test, the vinyl side of calibration board was
heated indoors to produce a thermal differential between
the vinyl and the metal substrate, resulting in a strongly
visible image. The drone was flown indoors to hover over
the calibration board which was put onto carpeted ground
and images were captured over a span of 2 minutes and 36
seconds. Noise in the non-covered metal captured in the
thermal image became more apparent as the plate lost heat
(See Figure 3).

Figure 3. Thermal reflections are more easily visible
in the metal portions of the calibration board

In the second test, conducted outdoors on an overcast
day, the kit was placed on the concrete ground with an un-
obstructed view of the sky; the outside temperature on that
day was approximately 8 C. The sky emits thermal energy
from space which is minimal if the sun doesn’t reflect on
the calibration board. Overcast clouds helped diffuse the
suns energy and reduce its effect on the board. This min-
imal, passive, diffuse thermal energy reflected differently
on the metal than the vinyl and created a sharp clear image
that needed no additional heating.In order to calibrate the
images, the pyAprilTag library was used to calculate the
distortion coefficients and the camera calibration matrix
of the two cameras. RGB images that were too large and
had to be reduced in size to accurately find the AprilTags.
Raw captured thermal images needed to have their color
scheme inverted, but no sharpening or filtering was done
otherwise.

4 Results
4.1 Thermal Camera Calibration

4.1.1 Cardboard Calibration Kit

Attempts to detect checker corners on thermal images
were hindered by uneven heating of the calibration board,
resulting in unclear corners. Image processing techniques
were employed to improve contrast between acrylic and
cardboard, as seen in Figure 4).

Figure 4. Image enhancement techniques were not
able to improve the checker detection on the card-
board and acrylic calibration board due to uneven
heating and cooling over the board.

Despite using various image processing techniques, it
was not possible to get useful calibration information out
of this technique. Although the acrylic squares were able
to heat up evenly, the corner detection algorithm failed
due to the uneven heating of the cardboard substrate. A
better calibration kit was needed with a thinner substrate
that would cool off more rapidly than the overlaid checker
pattern. 0 corners were detected and 0 images could be
used for calibration.

4.1.2 Wood and Vinyl Calibration Board

This calibration board required reheating every 6 min-
utes. Although some thermal images showed a checker-
board pattern, the raised corners made it difficult for the
corner detection algorithm to determine the actual corner,
resulting in subpar calibration (See Figure 5).

The only solution was to capture images from a distance,
which caused excessive blur and made the algorithm inef-
fective. This experiment highlighted the need for a planar
calibration surface, passive heating for capturing a large
number of calibration images, and accurate detection of
corners/feature points for precise alignment of RGB and
thermal images. 0 corners were consistently detected and
0 images could be used for calibration.



Figure 5. Corner detection issues on calibration
boards with spatial offsets

4.1.3 Metal and Vinyl Calibration Board

Passively heating the calibration board and orienting it
towards the sky negated the need for active heating ensured
consistency in the captured images, making the calibration
process inexpensive and easily deployable in open areas.
The use of vinyl AprilTags on a metal substrate improved
the robustness of feature point detection, creating a clear
contrast between high-emissivity vinyl and low-emissivity
metal. Additionally, the AprilTags helped in finding com-
mon points in both RGB and thermal images, although not
all AprilTags could be detected in both. Two AprilTags
were consistently undetectable due to holes in the metal
board, and were thus not used in analysis. Nearly 5500
points were detected using this method.

4.2 RGB & Thermal Image Alignment
4.2.1 AprilTag Detection after Image Reduction

Images were first undistorted using the distortion coef-
ficients and the calibration matrix obtained in the previous
step (See Figure 6).

Once images were undistorted, an RGB and thermal
image pair was created from the RGB and thermal images
taken at the same time of the same scene.

Image Pair = (𝑃𝑅𝐺𝐵
𝑖 , 𝑃𝑇ℎ

𝑖 ) (1)

Each image in the image pair was individually run
through the AprilTag detection algorithm to create two
sets of detected tag coordinates, X.

𝑓 (𝑃𝑅𝐺𝐵
𝑖 ) =

{
𝑋𝑖,1 . . . 𝑋𝑖,𝑛

}
= S𝑅𝐺𝐵 (2)

𝑓 (𝑃𝑇ℎ
𝑖 ) =

{
𝑋𝑖,1 . . . 𝑋𝑖,𝑛

}
= S𝑇ℎ (3)

The intersection of the two sets of detected tag coordi-
nates creates a new set of tag coordinate pairs.

S𝑅𝐺𝐵 ∩ S𝑇ℎ = S𝑇𝐶𝑃 (4)

Figure 6. An example of an undistorted image pair

S𝑇𝐶𝑃 =
{
(𝑋𝑅𝐺𝐵

𝑖,1 , 𝑋𝑇ℎ
𝑖,1 ) . . . (𝑋𝑅𝐺𝐵

𝑖,𝑛
, 𝑋𝑇ℎ

𝑖,𝑛
)
}

(5)

Each of the Euclidean coordinate pairs is then homog-
enized into a vector of homogeneous coordinates. At this
point, all the coordinates in an image pair could be nor-
malized and all of the detected coordinates in an image of
an image pair could be represented as a coordinate matrix:

(𝑃𝑅𝐺𝐵
𝑖 , 𝑃𝑇ℎ

𝑖 ) → (𝑪𝑹𝑮𝑩
𝒊 , 𝑪𝑻𝒉

𝒊 ) (6)

The first normalization step is centralization – all coor-
dinates are translated via a translation matrix T such that
they are all collectively centered around the origin. The
second normalization step is scaling to reduce the average
distance from the origin of all centralized points to 1 via a
scaling matrix S.

˜𝑪𝑹𝑮𝑩𝑪

𝒊 = 𝑺𝑹𝑮𝑩 · 𝑻𝑹𝑮𝑩 · 𝑪𝑹𝑮𝑩
𝒊 (7)

˜𝑪𝑻𝒉𝑪

𝒊 = 𝑺𝑻𝒉 · 𝑻𝑻𝒉 · 𝑪𝑻𝒉
𝒊 (8)

The normalized points can now be used to assemble an
A matrix that will be used to solve a homogeneous linear
least squares problem, 𝑨𝑥 = 0.

𝑔(𝐼𝑚𝑎𝑔𝑒𝑃𝑎𝑖𝑟𝑠) → 𝑨 (9)

After assembling the complete A matrix, singular value
decomposition can be used to calculate the homography
from normalized RGB image AprilTag coordinates to nor-
malized thermal image AprilTag coordinates.

𝑨 = 𝑼𝚺𝑽𝑻 (10)

The rightmost column of 𝑽 can be reshaped into a 3 x
3 �̃� matrix that is the homography matrix between nor-
malized coordinates. In order to establish a baseline level
of error for this algorithm, the tag coordinates in the RGB
image were transformed into tag coordinates in the thermal
image using the following algorithm:

𝑪𝑻𝒉,𝑹𝑮𝑩
𝒊 = 𝑻𝑻𝒉−1 ·𝑺𝑻𝒉−1 · �̃� ·𝑺𝑹𝑮𝑩 ·𝑻𝑹𝑮𝑩 ·𝑪𝑹𝑮𝑩

𝒊 (11)



This could also be represented by the general homogra-
phy from RGB to thermal images:

� = ���−1 · ���−1 · �̃ · ���� · ���� (12)

The X, Y, and overall reprojection error between the
thermal image and the transformed RGB image was cal-
culated and compared. The thermal images were taken as
the ground truth. RGB images needed to be resized smaller
in order for the AprilTags to be detected. This analysis was
carried out on RGB images that were resized to be 90%
to 10% of the original size in 5% increments. This was
done to maximize the number of AprilTags detected and
increase the accuracy of the homography between the im-
age pairs. Reprojection error results are summarized in
Figure 7.

Figure 7. Image Registration Error for homographies
between RGB and Thermal images calculated at var-
ious RGB image sizes

This general homography could now be applied to over-
lap an RGB image and a thermal image given a set of
corresponding points seen in both images. However, ther-
mal and RGB images often don’t share enough features to
allow for making correspondences. The differently sized
thermal and RGB images meant that a different general
homography would be needed to transform RGB images
to thermal images for data fusion. An overall flow chart
of the process is seen in Figure 8

4.2.2 Homography Calculation

Although a different general homography was required,
the normalized homography between all images remained
the same. The field of view of the RGB camera was larger
than the thermal camera and so there was a portion of the
RGB image that would consistently cross over the portion

Figure 8. Homography Process Flow Chart

of the thermal image. To calculate the general homography
for images between the two cameras, new normalization
transforms were calculated. These transforms would not
normalize AprilTags corners and centers or some other
features observable within both images in an image pair.
These would require the following general normalization
transforms:

���
� → General centralizing normalization matrix for

thermal images



����
� → General centralizing normalization matrix for

RGB images

���
� →General scaling normalization matrix for thermal

images

����
� → General scaling normalization matrix for RGB

images

These thermal image transformations would normalize the
thermal image corners and the corresponding points in the
RGB image. The normalization points in the thermal
image are defined to be based on the image size.

���
� � =



0 0
0 ����ℎ� (�ℎ�)

����ℎ(�ℎ�) 0
����ℎ(�ℎ�) ����ℎ� (�ℎ�)


(13)

However, the normalization points within the RGB image
are not precisely known. ���

� , ����
� , and ���

� can be
directly calculated from the size of the RGB and thermal
image by using the RGB and thermal image corners. We do
not know the precise corresponding normalization points
within the RGB image, so we cannot directly calculate
the ����

� . Instead we must use a Hadamard quotient to
relate the ����

� and ���
� . In the previous normalization

step, the RGB and thermal images in each image pair were
normalized by the scaling normalization matrices ����

�

and ���
� that were unique to the images in each image pair.

The Hadamard quotient, or the element-wise division, of
these two matrices results in a relative scaling matrix that
is related to the level of normalization scaling performed
for the RGB and thermal images [10].

����
� ∅���

� = ����
� (14)

Given a set of image pairs with corresponding feature
points, we could extract a set of scaling normalization
matrices for each image pair and this would allow us to
obtain a set of Hadamard quotients between the scaling
normalization matrices.

{����
� , ��ℎ

� } → {����
� , ���

� } → {����
� } (15)

The set of Hadamard quotients could be averaged to
produce a general Hadamard quotient.

����
� =

1
�

�∑
�=1

����
� (16)

The general Hadamard quotient and the general scaling
normalization matrix for thermal images could be used to
generate a pseudo general scaling normalization matrix for
RGB images.

�′���
� = ����

�

⊙
���
� (17)

With �′���
� , a new general homography could be cal-

culated to transform all RGB images to the thermal image
space so that they could be merged into 4 channel RGBT
tensors.

�� = ���−1
� · ���−1

� · �̃ · �′���
� · ����

� (18)

This general transformation homography was applied to
all the RGB images in the set of RGB and thermal image
pairs to produce a new set of warped RGB image and
thermal image pairs.

{�� (����
� , ��ℎ

� )} (19)

An AprilTag detection algorithm was used on every
image in the new set of image pairs to detect AprilTag
corners and center pixel locations. The detected points in
the thermal images were used as the ground truth to assess
the detected points in the RGB images. Figure 9 shows the
pixel errors seen for all detected points in the image pair
dataset.

Figure 9. Image Registration Errors between Simul-
taneously Captured RGB and Thermal Images

5 Discussion
5.1 AprilTag Detection after Image Registration

As the images were downsized from 100% to 80% of
their original size, baseline registration accuracy improved
until 5500 feature point pairs were available. The experi-
ment revealed that downsizing the RGB image to 50% of
its original size was ideal to detect the maximum num-
ber of AprilTag points – just under 8000 feature point
pairs. Although this didn’t improve accuracy, it reduced
the impact of outliers on �̃. This study also established a
baseline error rate for the method. Sky-facing plates with



AprilTags and vinyl can be used to create common fea-
ture points in RGB and thermal images of the same scene.
Metal plates can be placed around a building to improve

Figure 10. Thermally observed AprilTag marker that
could be used to provide common feature points in
RGB and thermal images

the algorithm’s image registration if the general homog-
raphy transform yields subpar results. This is depicted in
Figure 10.

This study focuses on calibrating and aligning individ-
ual RGB and thermal images from a DJI Mavic 2 Enter-
prise Advanced drone. Processing and analyzing thermal
video footage posed difficulties due to lost frames, loss of
information, and blur caused by drone movement. To ob-
tain accurate calibration and alignment, thermal footage
needs significant pre-processing, making video analysis
impractical for this study. As a result, thermal camera
calibration with video clips is not within the scope of this
paper.

5.2 Homography Calculation

This experiment showed that thermal and RGB images
could be aligned despite differences in distortion and field
of view between cameras.

One of the major limitations of how well the RGB and
thermal images can be aligned is the relative closeness
of the scene to the camera taking the image. Figure 11
shows how the overlap between RGB and thermal images
improves as the camera is moved further away from the
scene. The nature of building envelope photography is
such that drones will always be a large distance away from
the scene they are surveying and as a result will not suffer
from issues of poor overlap.

This is because as the distance between the 3D loca-
tion of the AprilTags and the cameras,

(
𝑋𝑇ℎ, 𝑋𝑅𝐺𝐵

)
, in-

creases, the ratio between the distance between the 3D
location of the AprilTags and the cameras and the base-
line distance between the two cameras gets progressively

(a) Poor image registration (b) Fair image registration

(c) Good image registration

Figure 11. Image registration results showing exam-
ples of poor, medium, and fair image registration

smaller and begins to approach 0. Therefore the angle
between the two cameras and the world point changes less
as the depth of the world point increases. Figure 12 shows
how the 3D to 2D projection of a world point onto the
camera image plane changes significantly based on the
distance of the world point to the cameras and the baseline
distance between the cameras.

Figure 12. The effect of near-depth objects on im-
age registration via the homography approximation
method.

Another limitation is that images taken too closely to-



gether have an influence on the alignment homography and
this could result in a less-than-optimal alignment homog-
raphy. This could be solved through an iterative approach
that discards any images from the homography calculation
that are far outside the general cluster of errors, this can
be visually seen in Figure 9. The image registration algo-
rithm could be further improved by having a better 𝑺𝑯𝑴𝑫

𝑮
estimation. This estimation can be improved by using
RANSAC to filter out images that required an 𝑺𝑯𝑴𝑫

𝑮 that
was significantly different from other images.

6 Conclusion

Using a calibration board made of machine-cut vinyl
overlaid onto a metal plate creates a robust calibration rig.
Calibration images of this rig aren’t affected by spatial off-
sets and when placed in an open field during the daytime,
it does not require active heating. Thermal cameras can be
calibrated robustly using vinyl AprilTags and metal plates.

The alignment algorithm is an approximation based on
the assumption that the two cameras are positioned rela-
tively close and the image that they are viewing is rela-
tively far away, which is accurate for UAV photography of
buildings and building envelopes.

In general, the image registration algorithm had a pixel
error of ±5 pixels in the y direction and ±2 pixels in the
x direction. These images are fairly well aligned and this
algorithm can be used to create custom thermal and RGB
image datasets of building envelopes.
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